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Abstract

An asymmetric synthesis of (2S,4R)-4-hydroxypipecolic acid was accomplished in eight steps and 31% overall
yield. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords:asymmetric synthesis; pyridinium salts; dihydropyridones; amino acids.

Pipecolic acid derivatives are useful synthetic intermediates for the preparation of medicinally impor-
tant compounds such as peptides,1 immunosuppressants,2 enzyme inhibitors3,4 or NMDA antagonists.5

The naturally occurring (2S,4R)-4-hydroxypipecolic acid (1) is found as a constituent of certain cyclo-
peptide antibiotics6 and has been used as a building block in a synthesis of palinavir (2), a potent HIV
protease inhibitor.7 Several racemic and a few enantioselective preparations of1 have been reported.8

Syntheses of enantiopure (2S,4R)-1 have been carried out by resolution or by using starting materials
from the chiral pool. Herein we report the first chiral auxiliary mediated asymmetric synthesis of1.

Addition of vinylmagnesium bromide to chiral 1-acylpyridinium salt3, formed in situ from 4-
methoxy-3-(triisopropylsilyl)pyridine9 and the chloroformate of (�)-TCC,10 provided the crude dihydro-
pyridone4 in high yield and 85% de (Scheme 1). Recrystallization of the crude product from methanol,
and purification of the concentrated mother liquor by radial PLC (SiO2, EtOAc/hexanes), gave a 78%
yield of diastereomerically pure4 as a white solid, mp 133–134°C. Reaction with sodium methoxide
followed by aqueous acid provided dihydropyridone5 in 89% yield with 94% recovery of the chiral
auxiliary, (�)-TCC. N-Acylation of 5 with n-BuLi and benzyl chloroformate gave a near quantitative
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yield of enantiopure carbamate6. Although conjugate reduction of dihydropyridone6 could be carried
out with L-Selectride,11 the use of zinc and acetic acid was found to be more convenient and provided
the piperidone7 ���25

D �30.8 (c 1.67, CHCl3), in higher yield. Oxidative cleavage of the vinyl group
with ozone and subsequent esterification of the crude acid gave ester8 ���23

D �17.9 (c 0.24, CHCl3), in
59% yield for the two steps. Stereoselective reduction of the C-4 keto group with K-Selectride afforded
the piperidinol912 ���23

D +81 (c 0.105, CHCl3). Catalytic hydrogenation of9 gave the desired (2S,4R)-
4-hydroxypipecolic acid (1) in 98% yield as a white solid. An analytically pure sample was obtained
by recrystallization from hot methanol: mp 273–274°C [lit.8 mp 273–275°C],���23

D �20.7 (c 0.30,
H2O) [lit.8 ���25

D �21.0 (c 1.03, H2O)]. The spectral properties of our (�)-1 are in agreement with
reported data. The naturally occurring1 was constructed enantioselectivity in eight steps and 31% overall
yield.13,14 The general approach should be amenable to the preparation of other substituted pipecolic
acids as either antipode.

Scheme 1.
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